
Information Retrieval and Web Agents: Final Project Spring 2017

Course Search Engine for Semester.ly

Lecturer: Dr. David Yarowsky Student: SangHyeon (Alex) Ahn

1.1 Abstract

Semester.ly is a web application developed by students of Johns Hopkins University that enables college
students to e�ciently manage their timetables for courses. Semester.ly currently supports 9 di↵erent colleges
with thousands of active users with more than a billion searches per year. At this moment, the web’s course
search is made based on the keywords matches between user’s query and titles of courses, which is a simple
boolean index search method. In this project, we intend to expand the scope of search beyond course titles,
retrieving most relevant courses to users’ queries based on advanced information retrieval techniques. In
this project, course corpus is transformed to document vectors using variety of methods including N-gram
sequence of words, term weightings, stopwords, word embedding and more. In our case study, we use
precision/recall scores to evaluate each retrieval method’s e↵ectiveness.

1.2 Objective

Objective of the project is simple: to provide a functionality that serves users to retrieve the most relevant
courses based on a query typed in a search bar on Semester.ly. I would like to expand the range of user-
typed-query to fetch beyond the course titles, including course description, evaluations, instructors, level of
di�culty, and flexibility using appropriate information retrieval methods.

Current system of Semester.ly has a search engine that enlists courses that match with words typed in the
search bar. Currently, search bar only returns the courses that fully contains query’s tokens in their titles.
Indeed, this limits users to explore and find courses that are beyond what it says by the title. For example,
if a user types in ”web robots”, current system retrieves no courses, however, we can achieve to return
”Information Retreival and Web Agents” class using our implementation.I believe that if we can extend the
range of query from course titles to more broad and specific queries, the user experience will excel through
more dynamic and useful course searches.

Going further, we shall explore the following objectives for enhancing the model.

1. Document Modeling

2. Document Modeling Expansion

3. Model evaluation using multiple metrics

4. E�ciency Optimization

5. Web Interface Implementation

6. Topic Modeling (Latent Dirichilet Allocation)

7. Course clustering using topic feature transformation

1-1

1-2

1.3 Methodology: Document Retrieval

In order to implement the Courses Search Engine, we make use of e↵ective document retrieval method based
on document-vector modeling.

Document-vector modeling is a way to encode each document (collective pieces of information for each course)
from courses corpus (pertaining to each school) to perform tasks such as relevance ranking, clustering, and
possibly classification. Our primary goal is relevance ranking.

Relevance ranking is a way to sort relevant documents from a query, with respect to similarity scores. By
computing similarity scores in various ways (i.e. cosine similarity, jaccard similarity, overlap similarity, dice
similarity), one can retrieve most relevant courses based on user input query (or another course).

By default, we start with common bag-of-words document modeling for retrieval, then we add multiple
features to refine/advance our search results in the following fields:

1. Stopwords
: using stopwords to eliminate non-meaningful words during search

2. Stemming
: stemming both queries and course document vectors (Porter Stemming) for improving vector modeling

3. N-grams
: utilizing di↵erent N-grams sequence of words for more accurate/specific query-searching (improving
upon bag-of-words assumption).

4. Term Frequency Weighting
: accounting for Term Frequency - Inverse Document Frequency to normalize word distribution under
corpus

5. Term Area Weighting
: weighting terms under di↵erent areas di↵erently (i.e. giving more weights for tokens from course
titles, than descriptions/evalutaions)

For example, a query search may look as below (examplified using terminal).

Query: "object oriented software"

Results (Course : Similarity Score):

- Object Oriented Software Engineering: 1.48799391725
- Software Systems Engineering: 0.53881590608
- Software Engineering Management: 0.428571428571
- Software Vulnerability Analysis: 0.350523742702
- Examining Archaeological Objects: 0.315244162496
- Human Sexual Orientation: 0.297219149139
- Introductory Programming in Java: 0.274075483931
- Music Notation Software: 0.258198889747
- Pseudorandomness and Combinatorial Constructions: 0.182913228255
- Rehabilitation Engineering Seminar: 0.139009609371

1-3

1.4 Evaluations of Model

For evaludation of our model, we use pre-defined queries and relevant courses to calculate precision/recall
scores for each model.

Pre-defined sets of query and relevant courses resembles the following:

Query: python jupyter notebook data visualization-

Relevant Courses: EN.553.436, AS.171.205, AS.191.383, EN.625.740, EN.553.636

Similar to how we made evaluations on each model, we calculate the following fields as measures of e↵ec-
tiveness.

1. Precision Scores at 0.25

2. Precision Scores at 0.50

3. Precision Scores at 0.70

4. Precision Scores at 1.00

5. Precision Mean1

6. Predicion Mean 2

7. Normalized Precision

8. Normalized Recall

Scores are computed for each query and result, then average results are calculated to evaluate a model for
each implementation change.

Basic Sequential Search (database course order)

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.00 0.00 0.00 0.00 0.0000 0.0000 0.197 0.515

Baseline Model (keyword boolean search)

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.14 0.14 0.14 0.15 0.1429 0.1429 0.195 0.514

1-4

Basic Document Vector Model (raw term frequency)

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.32 0.25 0.26 0.22 0.2778 0.2783 0.653 0.846

Basic + Stemming

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.43 0.43 0.39 0.35 0.4147 0.4426 0.863 0.996

Basic + Stemming + Term Area Weighting

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.57 0.58 0.55 0.465 0.5773 0.5695 0.889 0.997

Basic + Stemming + Term Area Weighting + Stopwords

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.57 0.61 0.58 0.48 0.5873 0.5855 0.899 0.998

Basic + Stemming + Term Area Weighting + Stopwords + TF-IDF

--
Averaged Results

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.71 0.62 0.58 0.54 0.6369 0.6260 0.916 0.999

Basic + Stemming + Term Area Weighting + Stopwords + TF-IDF + Bi-gram

--
Averaged Results

1-5

--
** P.25 P.50 P.75 P1.00 P_mean1 P_mean2. P_norm R_norm
== ==== ==== ==== ===== ======= ======== ====== ======
14 0.71 0.62 0.54 0.62 0.6250 0.6617 0.943 0.999

Summary:
Indeed, we incrementally made progress through implementing each feature to the document vector retrieval
system. Thus, we finalize our initial model with the following features: Basic + Stemming + Term Area
Weighting + Stopwords + TF-IDF + Bi-gram Vector Model (SMART).

1-6

Figure 1.1: Baseline Search.

1.5 E�ciency Optimization

One of the problems we faced during our model implementation was an e�ciency issue. Currently, the search
bar of the web interface collects a query every 0.1 seconds, sends a HTTP GET request for course retrieval,
then displays the top 4 courses found back to user.

Because each school’s semester course corpus contains 2000 courses, we needed to find a way to optimize
our search e�ciency (much below at a second mark) in order to not degrade user experience.

Current system, which is a title-keyword boolean matching performs a database SQL query with respect to
query tokens and course title tokens, returning object if there is a full match (all query tokens contained in
course title tokens). Since database query search is highly optimized, the search was rapid.

Figure 1.1 shows rapid performance over query search.

In our SMART document vector modeled retrieval system, not only do we need to preprocess raw text
documents as vectorized documents with term clustering/weighting to each course in the corpus, we need to
transform a query as a vector with same dictionary used for courses corpus. After making a transformation,
we would have to traverse each course in the corpus to calculate similarities using cosine similarity function
and sort them by the scores. Hence the following are the bottleneck of computations for each query search.

1. Corpus to matrix transformation (TF-IDF, regional-term-weighting, term-clustering)

2. Query to vector transformation

3. Corpus to query similarity score calculation (for each N many courses in corpus)

4. Sorting corpus courses by similarity scores

T = O(N ⇤W) +O(M) +O(N ⇤ C(W,M)) +O(N logN) (1.1)

Where N is the number of courses in corpus and W is the maximum number of words for a single course in
corpus, M is the token size of a query.

1-7

Figure 1.2: Naive Advanced Search Implementation

Obviously, this is a very expansive computation compared with simple query boolean search. Making it even
worse, we need to constantly store/load a dicationary hash for vectorizing query which is O(N ⇤W).

Figure 1.2 shows very slow performance over naive course retrieval search implementation.

Naive implementation took 12.609 seconds which is indeed 12607 times slower. Even when took out the
time to take preprocessing (10.753 seconds), still took 1.856 seconds which is 1856 time slower than query
boolean searching.

Therefore, we took the following optimization techniques to cut down retrieval complexity

1. Preprocess the corpus and store it to database

2. Serialize the dictionary hash and load only ONCE (loading takes 1.5 seconds)

3. Use Map/Reduce function for any AND/OR operation such as boolean search or cosine similarity
computation

4. Use Query Filtering to cut down course corpus to the courses that contains at least one query token
in its vectorized course object.

5. Use Cache to store courses/queries terms that had been used before

Figure 1.3 shows much better performance over advance search.

We were able to successfully optimize the query using the techniques above, and achieve much comprehensive
query searching at the expense of only 10 times slower computation than initial searching method. We
observed that 0.112 seconds is almost negligible to human-machine interaction user experience.

1-8

Figure 1.3: Optimized Advance Search.

1-9

Figure 1.4: Semester.ly’s Web Search Interface

1.6 Web Interface Integration and Usefulness

Next task was to implement the retrieval model to search bar web interface on the current stack of Semester.ly.
Successfully migrating the model implementation, you can see the di↵erence from before to after implemen-
tation of new search system based on information retrieval techniques. With our advanced search, we were
able to process broader range of queries upon courses database.

As you may be able to see from semester.ly’s website, a web-interface looks as following:

Figure 1.3 shows much better performance over advance search.

A search is made by passing a query through the search bar at top.

The following screenshots are some of the compare/contrast examples between baseline search and advanced
search implementation.

1-10

(a) baseline search 1 (b) advanced search 1

Figure 1.5: Search results for query 1: object detection, edge detection

(a) baseline search 2 (b) advanced search 2

Figure 1.6: Search results for query 2: relational database query optimization

(a) baseline search 3 (b) advanced search 3

Figure 1.7: Search results for query 3: linguistic knowledge

1-11

(a) baseline search (not sorted) (b) advanced search (sorted by similarity scores)

Figure 1.8: Course retrieval ranking

(a) baseline search (duplicacy not handled) (b) advanced search (duplicacy handled)

Figure 1.9: Duplicate course handling

Notice that most of the queries we tried indeed searches back no results in the baseline model. This is
because no title matches all the tokens in a query we provided above, while advance search actually computes
similarity scores between query and courses based on concurrent term occurances. One more advantage of the
advanced search is that retrieved courses are ordered by similarity/relevancy scores which provides the
ranking, while baseline search returns course objects in a storage order (i.e. alphabetical order), meaning
there is no di↵erence between retrieval orders.

Moving on, baseline search did not handle duplicate courses. In the advanced search, duplicate courses
(duplicate names but with di↵erent codes) are handled in order to maximize usage of search result ’real
estates’, that are currently showing 4 retrieved courses. This allows users to retrieve diversified course
results instead of a dominating match with multiple course levels (i.e. 3 ’machine learning’ courses with 400,
500, 600 level).

1-12

1.7 Topic Modeling

We wanted to further analyze the course distribution with respect to ”topics”. For example, a ”Computer
Ethics” class is a mix between ”Computer Science” related topic and ”Ethics” related topic. Through topic
modeling of the courses corpus, we can transform each course vector as a vector distribution of topics, a kind
of dimensionality reduction based on Latend Dirichilet Allocation (similar to PCA but more generative and
probabilistic).

The following list of topics is the generated from LDA using 10 number of topics, and 1000 most used words.

Fitting LDA models with tf features, n_samples=2316 and n_features=1000...

Topics in LDA model:
Course Topic #0:
study independent theory independent study 110 algebra law topics linear introduction
Course Topic #1:
sec making engineering management decision risk financial business decision making product
Course Topic #2:
music digital performance sound art history open majors course students
Course Topic #3:
research students seminar faculty graduate required science project materials graduate students
Course Topic #4:
clinical course 110 care nr management practice students health advanced
Course Topic #5:
students course management learning issues learn teaching skills leadership development
Course Topic #6:
health public care health care public health environmental course nursing medical issues
Course Topic #7:
course students writing social reading class political language spanish contemporary
Course Topic #8:
course topics introduction include chemistry analysis materials theory methods topics include
Course Topic #9:
course design en students analysis systems data topics background computer

As we can observe, notice that course topic 0 reflects courses attributed for math theory independent study,
course topic 1 reflects courses attributed with business management, and course topic 6 is most likely public
health classes.

Using these learned features, we provide functionalities such as course clustering and retrieving similar
courses.

Indeed, in a closer look at these new representation of courses, a following transformations were made to the
following courses with respect to 10 topics distribution above:

1. Quantitative Analysis of Clinical Data

[0.00256473 0.00256479 0.00256418 0.00256417 0.00256429 0.00256424
0.00256484 0.00256443 0.97691939 0.00256493]

clearly, topic 8 (analysis methods) is highly attributed.

1-13

2. Vocal Coaching

[0.03333333 0.03333333 0.69999977 0.03333333 0.03333333 0.03333357
0.03333333 0.03333333 0.03333333 0.03333333]

clearly, topic 2 (music) is highly attributed.

3. Investment-Portfolio Management

[0.06707932 0.70831829 0.06027959 0.00625029 0.12681864 0.00625095
0.00625032 0.00625133 0.00625042 0.00625085]

clearly, topic 1 (business management) is highly attributed.

4. Honors Algebra I

[0.95908301 0.00454574 0.00454641 0.00454745 0.00454594 0.00454659
0.00454581 0.00454663 0.00454607 0.00454634]

clearly, topic 0 (math theory independent study) is highly attributed.

The results even with 10 number of topics, which is very small in number, show promising results and sign
of potential.

1-14

Figure 1.10: GMM likelihood for each k clusters

1.8 Course Clustering using LDA (topic feature transformation)

After transforming each course object as a vector distribution of 50 di↵erent topics, we performed clustering
method to analyze the general distribution of combinations of the topics under course corpus.

Specifically, we used Gaussian Mixture Model for clustering, with our assumption that courses with the
same topic distribution would generally be spread out with gaussian-like (normal distribution) noise/error.

The following graph is the log likelihood plotting of the cluster distribution with respect to the number of k
clusters for GMM.

Figure ?? shows general distribution/spread of courses in corpus.

As illustrated by the graph above, we observe that there are generally 10 15 di↵erent topic sets that are
mostly spread out in courses corpus, which can be used especially for complexity reduction, truncating
the search range, or providing similar courses under similar topics. Indeed, we may wish to further explore
dimensionality reduction with the use of Singular Value Decomposition and Principle Component
Analysis for feature transformation, then perform Latend Semantics Analysis. However, since topic
modeling is rather much intuitive and easier to understand, we may expand the application of topic distri-

1-15

bution for providing more information about each course, or for expansion of features such as classification,
clustering and relevance calculation.

1.9 Conclusion

I believe that Semester.ly has created a positive impact on student bodies for facilitating a course scheduling
process that can easily become overwhelming. I am an active user of Semester.ly myself and I remember
being very impressed with all of its functionalities and constant dedications from developers. Through the
project, I hoped to improve upon the user experience and user interface, in order to provide more flexible
and comprehensive search engine for various applications and purposes.

I believe that the advanced search system will provide greater value to the current service, through providing
a ”virtual advisor” that can help students guide their curriculum at their schools. In the future, we wish
to further expand its features including user relevance feedback on searches, clustering visualization of
courses distribution, and providing most similar courses.

Furthremore, the system may enhance school’s curriculum planning for each department through user
distribution prediction for e�ciency maximized course scheduling and planning, as well as providing
more accurate descriptions for courses for better depicting each course.

I am incredibly grateful to the class Information Retrieval and Web Agent for enabling me to explore various
techniques under information extraction, and methods of applications for serving users. I wish to further
expand on its system to add additional values, and integrate more technological tools for both college students
and professors.

Lastly, I would like to thank professor David Yarowsky for his exceptionally knowledgeable lectures and
support for carrying on throughout this project.

	Abstract
	Objective
	Methodology: Document Retrieval
	Evaluations of Model
	Efficiency Optimization
	Web Interface Integration and Usefulness
	Topic Modeling
	Course Clustering using LDA (topic feature transformation)
	Results
	Final words

